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Abstract—Lensless imaging is an important and challenging
problem. One notable solution to lensless imaging is a single
pixel camera which benefits from ideas central to compressive
sampling. However, traditional single pixel cameras require many
illumination patterns which result in a long acquisition process.
Here we present a method for lensless imaging based on compres-
sive ultrafast sensing. Each sensor acquisition is encoded with a
different illumination pattern and produces a time series where
time is a function of the photon’s origin in the scene. Currently
available hardware with picosecond time resolution enables time
tagging photons as they arrive to an omnidirectional sensor.
This allows lensless imaging with significantly fewer patterns
compared to regular single pixel imaging. To that end, we develop
a framework for designing lensless imaging systems that use
ultrafast detectors. We provide an algorithm for ideal sensor
placement and an algorithm for optimized active illumination
patterns. We show that efficient lensless imaging is possible
with ultrafast measurement and compressive sensing. This paves
the way for novel imaging architectures and remote sensing in
extreme situations where imaging with a lens is not possible.

I. INTRODUCTION

RADITIONAL imaging is based on lenses that map the
scene plane to the sensor plane. In this physics-based
approach the imaging quality depends on parameters such as
lens quality, numerical aperture, density of the sensor array and
pixel size. Recently it has been challenged by modern signal
processing techniques. Fundamentally the goal is to transfer
most of the burden of imaging from high quality hardware
to computation. This is known as computational imaging, in
which the measurement encodes the target features; these are
later computationally decoded to produce the desired image.
Furthermore, the end goal is to completely eliminate the need
for high quality lenses, which are heavy, bulky, and expensive.
One of the key workhorses in computational imaging is
compressive sensing (CS) [1], [2]. For example, CS enabled
the single pixel camera [3], which demonstrated imaging with
a single pixel that captured scene information encoded with
a spatial light modulator (SLM). The pixel measurement is a
set of consecutive readings, with different SLM patterns. The
scene is then recovered using compressive deconvolution.
Broadly, the traditional imaging and single pixel camera
demonstrate two extremes: traditional cameras use a pure
hardware approach whereas single pixel cameras minimize
the requirement for high quality hardware using modern
signal processing. There are many trade-offs between the two
approaches. One notable difference is the overall acquisition
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time: the physics-based approach is done in one shot (i.e. all
the sensing is done in parallel). The single pixel camera and
its variants require hundreds of consecutive acquisitions, which
translates into a substantially longer overall acquisition time.

Recently, time-resolved sensors enabled new imaging ca-
pabilities. Here we consider a time-resolved system with
pulsed active illumination combined with a sensor with a
time resolution on the order of picoseconds. Picosecond time
resolution allows distinguishing between photons that arrive
from different parts of the target with mm resolution. The
sensor provides more information per acquisition (compared
to regular pixel), and so fewer masks are needed. Moreover, the
time-resolved sensor is characterized by a measurement matrix
that enables us to optimize the active illumination patterns and
reduce the required number of masks even further.

Currently available time-resolved sensors allow a wide
range of potential implementations. For example, Streak cam-
eras provide picosecond or even sub-picosecond time resolu-
tion [4], however they suffer from poor sensitivity. Alterna-
tively, Single Photon Avalanche Photodiode (SPAD) are com-
patible with standard CMOS technology [5] and allow time
tagging with resolutions on the order of tens of picoseconds.
These devices are available as a single pixel or in pixel arrays.

In this paper we present a method that leverages both time-
resolved sensing and compressive sensing. The method enables
lensless imaging for reflectance recovery with fewer illumi-
nation patterns compared to traditional single pixel cameras.
This relaxed requirement translates to a shorter overall acqui-
sition time. The presented framework provides guidelines and
decision tools for designing time-resolved lensless imaging
systems. In this framework the traditional single pixel camera
is one extreme design point which minimizes the cost with
simple hardware, but requires many illumination patterns (long
acquisition time). Better hardware reduces the acquisition time
with fewer illumination patterns at the cost of complexity.
We provide sensitivity analysis of reconstruction quality to
changes in various system parameters. Simulations with sys-
tem parameters chosen based on currently available hardware
indicate potential savings of up to 50x fewer illumination
patterns compared to traditional single pixel cameras.

A. Contributions

The contributions presented here can be summarized as:

1) Computational imaging framework for lensless imaging
with compressive time-resolved measurement,

2) Analysis of a time-resolved sensor as an imaging pixel,

3) Algorithm for ideal sensor placement in a defined region,

4) Algorithm for optimized illumination patterns.



B. Related Works

1) Compressive Sensing for Imaging: Compressive sensing
has inspired many novel imaging modalities. Examples in-
clude: ultra-spectral imaging [6], subwavelength imaging [7],
wavefront sensing [8], holography [9], imaging through scat-
tering media [10], terahertz imaging [11], and ultrafast imag-
ing [12], [13].

2) Single Pixel Imaging: One of the most notable appli-
cations of compressive sensing in imaging is the single pixel
camera [3]. This was later extended to general imaging with
masks [14]. We refer the interested reader to an introduction
on imaging with compressive sampling in [15].

Other communities have also discussed the use of indirect
measurements for imaging. In the physics community the
concept of using a single pixel (bucket) detector to perform
imaging is known as ghost imaging and was initially thought
of as a quantum phenomenon [16]. It was later realized that
computational techniques can achieve similar results [17].
Ghost imaging was also incorporated with compressive sens-
ing [18], [19]. In the computational imaging community this
is known as dual photography [20].

Single pixel imaging extends to multiple sensors. For ex-
ample, multiple sensors were used for 3D reconstruction of a
scene by using stereo reconstruction [21]. Multiple sensors
were also incorporated with optical filters to create color
images [22].

In this work we suggest using a time-resolved sensor instead
of a regular bucket detector for lensless imaging.

3) Time-Resolved Sensing for Imaging: Time-resolved
sensing has been mostly used to recover scene geometry.
This is known as LIDAR [23]. LIDAR was demonstrated
with a compressive single pixel approach [24], [25]. Time-
resolved sensing has also been suggested to recover scene
reflectance [26], [27] for lensless imaging, but without the
use of structured illumination and compressive sensing. Other
examples of time-resolved sensing include non-line of sight
imaging, for example imaging around a corner [28] and
through scattering [29], [30]. Imaging around corners was also
demonstrated with low cost time-of-flight sensors, using back
propagation [31] and sparsity priors [32].

In this paper we use compressive deconvolution with time-
resolved sensing for lensless imaging to recover target re-
flectance.

C. Limitations
The main limitations of using our suggested approach are:

o We assume a linear imaging model (linear modeling in
imaging is common, for example [3], [14]).

¢ Our current implementation assumes a planar scene. We
note that our approach can naturally extend to piecewise
planar scenes and leave this extension to a future study.

o Time-resolved sensing requires an active pulsed illumi-
nation source and a time-resolved sensor. These can be
expensive and complicated to set up. However, as we
demonstrate here, they provide a different set of trade-
offs for lensless imaging, primarily reduced acquisition
time.
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Fig. 1. Lensless imaging with compressive ultrafast sensing. a) Illumination,
a time pulsed source is wavefront modulated (G) and illuminates a target with
reflectance f. b) Measurement, omnidirectional ultrafast sensor (or sensors)
measures the time dependent response of the scene m(t). H is a physics-
based operator that maps scene pixels to the time-resolved measurement.

II. COMPRESSIVE ULTRAFAST SENSING

Our goal is to develop a framework for compressive imaging
with time-resolved sensing. Fig. 1 shows the system overview.
A target f € R with L pixels is illuminated by wavefront
G € RE. G is produced by spatially modulating a time
pulsed source. Light reflected from the scene is measured by
an omnidirectional ultrafast sensor with time resolution 7" po-
sitioned on the sensors plane. The time-resolved measurement
is denoted by m € RY, where N is the number of time
bins in the measurement. Better time resolution (smaller T")
increases N. H € RV*! is the measurement matrix defined
by the space to time mapping that is enforced by special
relativity. In the case when the time resolution is very poor,
H is just a single row (N = 1), and the process is reduced to
the regular single pixel camera case.

We consider K sensors (¢ = 1..K) with N time samples
and M illumination patterns (j = 1..M) so the time-resolved
measurement of the i-th sensor, for a target illuminated by
the j-th illumination pattern, is defined by: m; ; = H,G;f.
Concatenating all measurement vectors results in the total
measurement vector m € RVEM  quch that the total mea-
surement process is:

m = m; ; = HiGj f= Qf (l)

where, Q is an NK M x L matrix which defines the total
measurement operator.

Here we invert the system defined in Eq. 1 using compres-
sive sensing approach. To that end, we analyze and physically
modify Q to make the inversion robust. In the remainder of
this paper we analyze and optimize the following fundamental
components of Q:

o Physics-based time-resolved light transport matrix H.
H is a mapping from the spatial coordinates of the scene
domain to the time-resolved measurement (H : r — ¢).
Section III derives a physical model of H and discusses
its structure and properties. H can be modified by chang-
ing the sensor time resolution and position in the sensor’s
plane.
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Fig. 2. Schematic of the light cone for the case of a planar stationary target.
a) Scene geometry, the target plane and sensor plane are separated by a
distance z = D. Three detectors are positioned at different y positions in
the detector plane. b) The light-like part of the light cone emanating from
the target point marked with a red *X’ defines the measurement times of
the different detectors. Due to the geometry, the light cone will arrive to the
detectors at different times. First it will be measured by detector I which is
closest to the source, followed by detector II and III.

o Combination of multiple sensors. Multiple sensors can
be placed in the sensor plane, such that each sensor will
correspond to a different time-resolved light transport ma-
trix H;. Section IV presents an algorithm for optimized
sensor placement in the sensor’s plane.

e Illumination (probing) matrix G. This matrix is similar
to the sensing matrix in the single pixel camera case
which was realized then with an SLM. In our analysis
we assume the modulation is performed on the illumi-
nation side (but note that modulating the illumination is
equivalent to modulating the incoming wavefront to the
sensor). The structured illumination allows modulating
the illumination amplitude on different pixels in the
target. Section V presents an algorithm for optimized
illumination patterns for compressive ultrafast imaging.

The inversion of Eq. 1 is robust if there is little lin-

ear dependence among the columns of Q (so that it has
sufficient numerical rank). This is evaluated by the mutual
coherence [33] which is a measure for the worst similarity of
the matrix columns and is defined by:

‘QaTQb’
n= max —
1<ab<Lia#b ||Qally [| Qs ll,

From here on, as suggested in [34], we will use an alternative
way to target the mutual coherence which is computationally
tractable and defined by:
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where Iy is the identity matrix of size L, Q is Q with
columns normalized to unity, and ||-||  is the Frobenius norm.
This definition directly targets the restricted isometry property
(RIP) [34], which provides guarantees for using compressive
sensing. In the remainder of the paper we optimize different
parts of Q using this measure of coherence as a cost objective.

III. TIME-RESOLVED LIGHT TRANSPORT

We start by developing a generic light transport model
for time-resolved imaging. The finite speed of light governs
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Fig. 3. Analysis of a one-dimensional world. a) Geometry, the target is a black
line with a white patch, at a distance D from the time-resolved sensor. b) The
time-resolved measurement produced by the sensor. The signal start time
corresponds to the patch distance, and the time duration to the patch width.
c) The measurement matrix H, generated from Eq. 7. Here the distance to the
target is D = 1000 cm and the sensor has a time resolution of T" = 20 ps.

information propagation, and provides geometrical constraints
which will be used in the image formation model. These are
conveniently described in a Minkowski space with the space-
time four-vector (r,t) = (z,y, 2,t). If we consider a point
source at position r’ pulsing at time ¢/, and a sensor at position
r, then the space-time interval between the source (r’/,¢’) and
the sensor (r,t) is defined by:

2= ||r—r’||§ — At —t)? 4)

where c is the speed of light. Enforcing causality and light-like
behavior requires s?> = 0 which defines the light cone. Fig. 2
shows a schematic of the light cone and demonstrates how the
same event is measured in various positions at different times.
Thus, the time-resolved measurement of a sensor at position
r and time ¢ of a general three-dimensional time dependent
scene f(r’,t') is the integral over all (r',¢’) points on the
manifold M defined by s = ||r — v/||3 — 2(t — t/)% = O:

m(r,t) = / bty 5)
JATETE

where the 1/|jr — 1’ Hg term accounts for intensity drop off.
Next, we assume a planar scene at z’ = D, sensor at z = 0
and a stationary target so that ¢’ is fixed and can be assumed
t’ = 0 without loss of generality. f is a discretized, lexico-
graphically ordered representation of the target reflectance map
f(z,y). We use the circular symmetry of the light cone so that:

2T

1
m(z,y,t) = / o (x + pcos(8'),y + psin(0')) pdd” (6)
0

with p = v/c?t2 — D2, The intensity drop off is written as a
function of time due to: ||[r — /|| = ¢ (t — t')* = ¢*{2. Fig. 2
shows a schematic of the light cone for this case.

The sensor’s finite time resolution ' corresponds to the sam-
pling of m(z,y,t) and denoted by m. A sensor positioned at
location r; = (z;,y;) will produce a measurement m; = H,f,
where H; is defined by the kernel in Eq. 6. H; is a mapping
from a two-dimensional spatial space to a time measurement
(dependent on the detector position). The kernel maps rings
with varying thicknesses from the scene plane to specific time



a) b)
200 200
10 cm 1ps
100 cm 10 ps
500 cm 20 ps
150 1000 cm 150 30 ps
2000 cm 50 ps
= 5000 cm — 75 ps
| 5l 100 ps
100 =100
< <
50 50
0 0
0 20 40 60 80 100 1000 2000 3000 4000 5000
T [ps| D [cm)]

Fig. 4. Recoverable resolution with time-resolved sensing. a) Plots for various
scene distances D as a function of sensor time resolution 7'. b) Plots for
various sensor time resolutions as a function of target distance D.

bins in the measurement. The next subsection discusses the
properties of this kernel.

A. One-Dimensional Analysis

It is interesting to analyze H in a planar world (y = 0) with
the sensor at the origin (Fig. 3). In that case Eq. 6 is simplified

1 [f (ﬂ/c%&? - D?) +f (\/02t2 f D2)] 7

Fig. 3c shows an example of the corresponding H matrix. This
simple example demonstrates the key properties of the time-
resolved measurement: 1) It is a nonlinear mapping of space to
time. 2) The mapping is not unique (two opposite space points
are mapped to the same time slot). 3) Spatial points that are
close to the sensor are undersampled (adjacent pixels mapped
to the same time slot). 4) Spatial points that are far from the
sensor are oversampled but they are of a weaker signal. These
properties affect imaging parameters as described next:

1) Resolution limit: The minimum recoverable spatial
resolution is defined by the closest point to the sensor:
ct; = D, and the point that corresponds to the next time slot:
c(t1 +T) = vD? + Az2, which results in :

A’I:CT\/].+22 )
cT

Fig. 4 shows a few cross sections of Eq. 8 for relevant
distances D and time resolution 7". Better time resolution is
required for further scenes (for the same recoverable resolu-
tion).

2) Signal to noise ratio and dynamic range limitation:
The closest point to the sensor defines the measurement gain
(in order to avoid the saturation intensity I,,¢), such that
Tsqr > A(DQ)_I, where A accounts for all measurement
constants. The furthest measurable point from the sensor
(Z/naz) should result in a measurement above the noise floor:
I, < A(D*+22,,,)

Since the signal to noise ratio (SNR) is proportional to the
sensor gain, closer scenes will have smaller coverage areas.
For example, if we assume: I;,; = BI, (for some constant
B> 1) we get: e < VB —1D.

The combined effect of these phenomena is demonstrated
in Fig. 5. In this example, we consider a ‘half plane’ (z > 0),
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Fig. 5. Effects of averaging and noise on time-resolved measurement. a) f(x)
is a sinusoid on the positive half plane, at a distance D = 1000cm
from a sensor with time resolution 7' = 20 ps and measurement noise of
SNR= 35dB. b) f(x) is the result of inverting the system using the Moore-
Penrose pseudoinverse, which demonstrates the undersampled measurement
close to the sensor, and sensitivity to noise further away from the sensor.

where the target reflectance is f(x) = sin(x) with additive
white Gaussian noise, which results in SNR= 35dB. For
this simple demonstration, we use the Moore-Penrose pseu-
doinverse to invert the system, such that f = H'm. The
inversion shows that close to the origin (x < 50cm) the
reconstruction suffers from an undersampled measurement;
this area is not sensitive to the measurement noise, and looks
identical with zero noise. The noise has an obvious effect on
the reconstruction further from the origin (z > 700 cm).

B. Analysis of a planar scene

All the properties presented in the previous subsection
extend to the case of a planar scene. Eq. 6 shows that the
measurement process integrates over circles centered around
the sensor. Due to the finite time resolution, the circles are
mapped to rings. The rings are thinner for further points,

according to p,, = \/c2(nT + to)> — D2, where n is the time
sample number and ty = D/c is the time of arrival from the
closest point. Fig. 6 shows the ring structure for a few cases
of time resolution and target distance.

Lastly, Eq. 6 provides the structure of the H; matrix,
and guidelines for the effects of changing the sensor time
resolution and position on the measurement matrix Q. Natu-
rally, better time resolution will reduce the mutual coherence.
An alternative to improved time resolution which might be
technically challenging is to add more sensors as discussed
next.

IV. OPTIMIZED TIME-RESOLVED SENSOR ARRAY

Using multiple sensors is a natural extension to the single
pixel camera. In the case where the sensors are time sensitive,
their positioning affects the measurement matrix Q and so it
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Fig. 6. Measurement of a planar scene for various sensor time resolutions 7’
and target distances D. The color represents time samples indexes (for the
first 10 samples). As the time resolution worsens or the target is further away,
the rings become thicker. The images show a subset area of 100 cm x 100 cm.

can be optimized. Here we derive an algorithm for sensors
placement in an array in order to reduce the mutual coherence
of Q. To simplify the array structure we constrain the sensors
to be placed on a single plane z = 0 and constrained to an
allowed physical area. The algorithm accepts two parameters:
the number of sensors K and the allowed physical area C, and
provides the ideal positions under these constraints.

Starting with Eq. 6, the goal is to maximize the difference
between m(x1,y1,t) and m(xa,ye,t). This is achieved by
choosing r1 = (21,y1), ra = (22, y2) which are furthest apart
(to minimize overlap of the rings as shown in Fig. 6).

More precisely, the goal is to select ¢« = 1..K positions r;
within an area C such that the distance between the sensors is
maximized. This can be achieved by solving:

K

{ri},_, = argmax
{ri€Cl,_y. k L=

1 min [[rx — riely ©)
Eq. 9 can be solved by a grid search for a small number of
sensors. A more general solution is to relax the problem and
follow the equivalent of a Max-Lloyd quantizer [35]. The steps
are as follows:
1) Initialize K random positions in the allowed area C
2) Repeat until convergence:
o Calculate the Voronoi diagram of the point set.
« Move each sensor position to the center of its cell.
This positioning algorithm is evaluated for various system
parameters by assessing the effect of the sensor time reso-
lution, number of sensors and array size (square of varying
sizes) on the coherence cost objective (Eq. 3). Fig. 7 shows
these results. Several key features of the system appear in this
analysis: 1) Improving time resolution reduces the number of
required sensors non-linearly. 2) It is always beneficial to im-
prove the sensors’ time resolution. 3) The sensor area defines
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Fig. 7. Effect of number of sensors K, their time resolution 7, and array size
constraint C on the mutual coherence p evaluated with Eq. 3. The target size
is 5m X 5m, composed of 80 x 80 pixels, and at a distance of D = 10m
from the sensor plane. a) Mutual coherence contours for a varying number of
sensors and their time resolution (for fixed array size C = 10cm X 10 cm).
b) Similar to (a) with varying array size constraint (for fixed time resolution
T = 20 ps).

a maximum number of useful sensors, beyond which there
is no significant decrease in the mutual coherence (increasing
the array size linearly reduces the mutual coherence for a fixed
number of sensors). 4) It is possible to easily trade off between
different aspects of the system’s hardware by traveling on the
contours. For example, a decrease in the sensor time resolution
can be balanced by adding more sensors. This can be useful
for realizing an imaging system as sensors with lower time
resolution are less expensive and easier to manufacture. The
next section provides an alternative to improving hardware by
adding structured illumination.

V. OPTIMIZED ACTIVE ILLUMINATION FOR
TIME-RESOLVED SENSOR ARRAY

We now make the leap to compressive sensing. Previous
sections discussed single sensor considerations and sensors
placement in an array. This section covers ideal active illu-
mination patterns. We assume the illumination wavefront is
amplitude-modulated; this can be physically achieved by an
SLM or liquid crystal display (LCD).

When considering different illumination patterns, Hadamard
patterns and random patterns sampled from Bernoulli distri-
bution are normally chosen. Instead, we suggest patterns that
directly aim to minimize the mutual coherence of the measure-
ment matrix. The mathematical patterns may have negative
values which can be represented by taking a measurement
with an “all on” pattern and subtracting it from the other
measurements (due to the linearity of the system) [14].

In order to optimize the illumination patterns, we follow the
proposal in [34] and learn the sensing matrix (illumination
patterns) in order to directly minimize the coherence of the
measurement matrix. For example, this concept has been
reduced to practice in [36].

The crux of the idea is that given a number of allowed
illumination patterns M, we choose the set of illumination
patterns that minimizes the mutual coherence of the matrix Q.
Since the illumination matrix G; is performing pixel-wise
modulation of the target, it is a diagonal matrix with the
pattern values on the diagonal G; = diag{g;}, where g,
is a vector containing the j-th pattern values. Taking a closer
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Fig. 8. Effect of number of illumination patterns M, sensor time resolution
T and number of sensors K on the mutual coherence p evaluated with Eq. 3.
The target size is 5m X 5m, composed of 80 x 80 pixels, and at a distance
of D = 10m from the sensor plane. The sensor area C is a square of
size 10cm X 10 cm. a) Mutual coherence contours for a varying number
of illumination patterns and sensors’ time resolution (for a fixed number of
sensors K = 1). b) Similar to (a) with a varying number of sensors (for fixed
time resolution 7" = 20 ps).

look at Eq. 1, we stack all the sensor matrices H; into H such
that:

HG, H x diag{g:}

H x diag{gn)
(10)

HG

Based on Eq. 3, the ideal patterns are the solution to:

{In-arafl}) o

This can be solved with standard constrained optimization
solvers. Appendix A provides the derivation for the cost
function and its gradient.

arg min
L
{gje[_l’l] }jzl..lw

{gj}j=1.m =

Fig. 8 shows the change in mutual coherence in simulations
while varying the number of allowed illumination patterns,
the sensor time resolution, and the number of sensors. As
predicted by CS theory, increasing the number of patterns
has a strong effect on the mutual coherence. This strong
effect allows one to easily relax the demands on the hardware
requirements when needed. However, as more patterns are
allowed, there are increasingly more dependencies on the
sensors’ parameters. This demonstrates the synergy between
compressive sensing and time-resolved sensing. In this case
traveling on mutual coherence contours allows one to trade-
off system complexity (cost, size, power) with acquisition time
(increased when more patterns are required).

Fig. 9a shows several examples of the patterns computed by
solving Eq. 11. Fig. 9b demonstrates the value of the optimized
patterns compared to Hadamard and random patterns sampled
from Gaussian and Bernoulli (in {—1,1}) distributions. For
very few illumination patterns (below ten) all patterns are
comparable. When allowing more illumination patterns, the
optimized patterns are performing better by reducing the
mutual coherence faster compared to the other approaches.
As predicted, the performances of Hadamard, Gaussian and
Bernoulli patterns are nearly identical.

—— Optimized patterns

——Hadamard
Gaussian

— Bernoulli

150 200 250 300
M

Fig. 9. The value of optimized active illumination patterns. The patterns are
optimized for a 5m X 5m target composed of 80 x 80 pixels at a distance
of D = 10m from the sensor plane. The measurement is simulated with
K = 1 sensors and 7" = 20 ps. a) Examples of several patterns computed
for M = 50. b) Comparison of different active illumination methods and
their effect on the mutual coherence for varying M. The optimized patterns
outperform Hadamard and random patterns sampled from Gaussian and
Bernoulli (in {—1, 1}) distributions.
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Fig. 10. Effect of system parameters on reconstruction quality. Various

design points (different number of sensors K and time resolution 7°) are
simulated. The number of optimized illumination patterns M is set as the
minimal number of patterns required to achieve reconstruction quality with
SSIM > 0.95 and PSNR > 40dB. The target used is the cameraman image
(see Fig. 11 right). a) Demonstrate the trends of various number of detectors
K as a function of the time resolution 7T". b) Shows the trends of different
detector time resolution as a function of the number of detectors.

VI. NUMERICAL RESULT

This section demonstrates target reconstruction using the
above analysis. The target dimensions are 5m x 5m with
80 x 80 pixels (L = 6400) and it is placed 10 m away from
the detector plane. The detector array is limited to a square
area of C = 10cm X 10 cm. The detector placement method
used is described in section IV and the illumination patterns
are computed using the algorithm suggested in section V. The
measurement operator is simulated as described in section III
to produce the total measurement vector. White Gaussian
noise is added to the total measurement vector to produce
a measurement SNR of 60 dB. The targets simulated here are
natural scenes (sparse in gradient domain). To invert Eq. 1 we
use TVAL3 [37] (with TVL2 and a regularization parameter
of 213 for all targets). The reconstruction quality is evaluated
with both Peak Signal to Noise Ratio (PSNR — higher is bet-
ter, performs pointwise comparison) and Structural Similarity
index (SSIM — ranges in [0, 1], higher is better, takes into
account the spatial structure of the image [38]).

So far, the discussion focused on reducing the mutual
coherence of the measurement matrix Q. Fig. 10 demonstrates
the effect on the full reconstruction process. The target used
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Fig. 11. Imaging with compressive ultrafast sensing for different targets. a) The target image. b) Result with regular single pixel camera with M = 50 and
M = 2500. c) Results with compressive ultrafast sensing with M = 50 for four design points with time resolution of 7" = 100 ps and 7" = 20 ps, and
K =1 and K = 2. All reconstructions are evaluated with SSIM and PSNR. The results demonstrate the strong dependency on time resolution. Result for
K = 2 and T = 20 ps shows perfect reconstruction on all targets based on SSIM. All measurements were added with white Gaussian noise such that the

measurement SNR is 60 dB.

is the cameraman image (Fig. 11 right). The goal is to
find the minimal number of illumination patterns in order
to produce a reconstruction quality defined by SSIM > 0.95
and PSNR > 40dB. This is repeated for various number of
detectors with different time resolutions. The trends demon-
strate a linear relationship between the number of illumination
patterns and the detector time resolution needed for a specified
reconstruction quality. Another notable effect is the significant
gain in the transition from one to two detectors followed by a
diminishing gain for additional detectors. This gain decreases
as the detector time resolution improves. These trends can
be useful to trade off design constraints. For example, for
the specified reconstruction quality the user can choose one
detector with a time resolution of 20 ps and 80 patterns. The
same acquisition time can be maintained with two simpler
detectors of 40ps. Alternatively, two detectors with 20ps
require only 40 patterns (shorter acquisition time) for equal
reconstruction quality.

Finally, we compare the suggested design framework to
a traditional (non-time aware) single pixel camera. This is
simulated with an H matrix with just one row with ones.
The illumination patterns are sampled from a Bernoulli ran-

dom distribution in {—1,1} in a similar way to the orig-
inal single pixel camera experiments [3]. Fig. 11 shows
the results for three different targets. Reconstructions with
a traditional single pixel camera are shown in Fig. 11b
for M =50 and M = 2500 patterns. Four different design
points of compressive ultrafast imaging are demonstrated
in Fig. llc: {K=1,T=100ps}, {K =2,T7 = 100ps},
{K=1,T=20ps}, and {K =2,T =20ps}, all with
M =50 patterns (such that the acquisition time is equal).
Several results are worth noting:

o Reconstruction with K =2, T'=20ps, and M = 50
achieves perfect quality based on SSIM for all targets.

o Reconstruction with K =1, T =20ps, and M = 50
outperforms the traditional single pixel camera approach
with 50x fewer illumination patterns and demonstrates
the potential gain of this approach.

o A traditional single pixel reconstruction with M = 50
patterns (same acquisition time as the compressive ul-
trafast imaging design points discussed) fails to recover
the scene information.

e There is a significant gain in performance when improv-
ing the sensor time resolution.



VII. DISCUSSION

Section V analyzed only wavefront amplitude modulation.
There are many other ways to use coded active illumination in
order to minimize the measurement coherence. For example,
we assumed the wavefront is just a pulse in time, but we
can perform coding in time domain as well. This will cause
different pixels on the target image to be illuminated at differ-
ent times. Physical implementation of such delays is possible
with, for example, tilted illumination and fiber bundles (notice
that while phase SLM induces varying time delays on the
wavefront, these time scales are shorter than current time-
resolved sensors resolution). Analysis of such implementation
requires detailed care with the interplay between the H and
G matrices (since G becomes time-dependent); we leave this
analysis to a future study.

The forward model (Eq. 5) assumes the wave nature of
light is negligible. This assumption is valid if 1) Diffraction is
negligible: the scene spatial features are significantly greater
compared to the illumination wavelength (order of pm).
2) Interference is negligible: the coherence length of the
illumination source is significantly smaller compared to the
geometrical features. For pulsed lasers the coherence length
is inversely proportional to the pulse bandwidth; this usually
results in sub-cm coherence lengths.

The suggested approach provides a framework for lensless
imaging with compressive ultrafast sensing. This framework
provides the user with design tools for situations in which
lensless imaging is essential. It allows the user to effectively
balance available resources — an important tool since the
hardware requirements can be substantial (pulsed source with
structured illumination and time-resolved sensors). We note
that time-resolved sensors are becoming more accessible with
the recent advances in CMOS based SPAD devices (e.g. [5]).
Another limitation of our approach is the requirement of
known geometry. Interestingly, the approach suggested in [24],
[25] requires similar hardware to recover scene geometry
without reflectance, hence it might be possible to fuse the
two approaches in the future.

VIII. CONCLUSION

We demonstrated a novel compressive imaging architecture
for using ultrafast sensors with active illumination for lensless
imaging. We discussed analysis tools for hardware design, as
well as algorithms for ideal sensor placement and illumination
patterns which directly target the RIP for robust inversion with
compressive deconvolution. The presented approach allows
lensless imaging with single pixel and dramatically better
acquisition times compared to previous results. This enables
novel lensless single pixel imaging in challenging environ-
ments. The approach and analysis presented here open new
avenues for other areas with potential tight coupling between
novel sensors and compressive sensing algorithms.

APPENDIX A
ILLUMINATION PATTERN OPTIMIZATION ALGORITHM

Here we provide a derivation for calculating the cost func-
tion in Eq. 11 and its gradient. Starting with the cost function

to minimize: )
< =
v =[u-araf,

Define A such that its j-th row is ng (A is an M x L matrix).
Our goal is to find A which minimizes 7.
We start by writing: O = Q7'Q, and so:

7=t -0} = Tr {1, - 0) (1. - 0)"}
=Tr{It} - 2Tr{O} + Tr{00"} = |O|% — L

(12)

13)

since Tr {O} = L. Next, we define Q = QP where P is a
diagonal matrix with the inverse of the columns norm:
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This allows us to write:
M
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where Dy ; is a diagonal matrix with the j-th row of A on
the diagonal. Next we note that:

L
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a=1
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where Sg is a diagonal matrix with the diagonal entries of @,
and © denotes element wise multiplication. Finally:
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We note that W (Eq. 19) is a constant matrix for the illu-
mination pattern optimization and can be calculated a priori.
Eq. 20 and 23 provide the final expression for y(A).

We now develop an expression for the gradient of the cost
function. Considering the chain rule for matrices [39]:

d’}/ di’a b
— 24
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where J is Kronecker delta. The second term in Eq. 24 is given

by [39]:
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Combining Eqs. 24 through 27 we get:
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where E' and E? are the terms in Eqs. 25 and 26 respectively.
After some algebra we get:
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where, I~ = 1 — I, (matrix with all ones except for zeros on
the diagonal), which allows us to write the final gradient as:

C1 = AS<I>71 (Oél + OtlT)
c2=(A® (1yxrSe (a2 +0a2")Se ™)) (31)
dy

dA
where 1,71, 1s an M x L matrix with all ones.
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